Convergence of High-Order Deterministic Particle Methods for the Convection-Diffusion Equation

نویسندگان

  • RICARDO CORTEZ
  • R. CORTEZ
چکیده

A proof of high-order convergence of three deterministic particle methods for the convectiondiffusion equation in two dimensions is presented. The methods are based on discretizations of an integro-differential equation in which an integral operator approximates the diffusion operator. The methods differ in the discretization of this operator. The conditions for convergence imposed on the kernel that defines the integral operator include moment conditions and a condition on the kernel’s Fourier transform. Explicit formulae for kernels that satisfy these conditions to arbitrary order are presented. c © 1997 John Wiley & Sons, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

High-order fundamental and general solutions of convection-diffusion equation and their applications with boundary particle method

In this study, we presented the high-order fundamental solutions and general solutions of convection-diffusion equation. To demonstrate their efficacy, we applied the highorder general solutions to the boundary particle method (BPM) for the solution of some inhomogeneous convection-diffusion problems, where the BPM is a new truly boundaryonly meshfree collocation method based on multiple recipr...

متن کامل

On the Behavior of Combination High-Order Compact Approximations with Preconditioned Methods in the Diffusion-Convection Equation

In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finitedifference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace m...

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997